If it's not what You are looking for type in the equation solver your own equation and let us solve it.
r^2=44
We move all terms to the left:
r^2-(44)=0
a = 1; b = 0; c = -44;
Δ = b2-4ac
Δ = 02-4·1·(-44)
Δ = 176
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{176}=\sqrt{16*11}=\sqrt{16}*\sqrt{11}=4\sqrt{11}$$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{11}}{2*1}=\frac{0-4\sqrt{11}}{2} =-\frac{4\sqrt{11}}{2} =-2\sqrt{11} $$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{11}}{2*1}=\frac{0+4\sqrt{11}}{2} =\frac{4\sqrt{11}}{2} =2\sqrt{11} $
| 6x+5(X-4)=56 | | 7x/2=11 | | y2-8y-20=0 | | 3x-4x+2=-6 | | 75/0.25=x | | 40x+10(1.5x)=950 | | 9^x=3^-26 | | 16t2-56t+49=0 | | -8w^2+18w-7=0 | | 36x+18=24x+21 | | 2s-1/2=-1/3 | | 8/15=x/47 | | 81-4x=1/2x | | 5(x+6)=43 | | (2x-20)+(x+5)+(90-×)=180 | | 12x-47=13x-48 | | 6x^2=512 | | | | | | 6x+30=7x+23 | | (X-3)(2x+7)=x^2-1 | | 124(h+7)=8 | | 3s+12=13 | | 11x-62=180 | | 3140=x789 | | 3.2x+5=-1 | | 48-24=x | | 22(z=2)44 | | 2y+8=96 | | 24x+6=10x+24 | | 0=4+a | | (9x-25)=(6x=8) |